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Abstract

A Neural Network (NN) algorithm was developed to estimate global surface

soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using

passive microwave observations from the Soil Moisture Active Passive (SMAP)

satellite, surface soil temperatures from the NASA Goddard Earth Observing

System Model version 5 (GEOS-5) land modeling system, and Moderate Res-

olution Imaging Spectroradiometer-based vegetation water content. The NN

was trained on GEOS-5 soil moisture target data, making the NN estimates

consistent with the GEOS-5 climatology, such that they may ultimately be as-

similated into this model without further bias correction. Evaluated against in
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situ soil moisture measurements, the average unbiased root mean square error

(ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037

m3m−3, 0.70 and 0.66, respectively, against SMAP core validation site measure-

ments and 0.026 m3m−3, 0.58 and 0.48, respectively, against International Soil

Moisture Network (ISMN) measurements. At the core validation sites, the NN

retrievals have a significantly higher skill than the GEOS-5 model estimates and

a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product.

The feasibility of the NN method was reflected by a lower ubRMSE compared

to the L2P retrievals as well as a higher skill when ancillary parameters in

physically-based retrievals were uncertain. Against ISMN measurements, the

skill of the two retrieval products was more comparable. A triple collocation

analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and

Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN

and L2P retrieval errors have a similar spatial distribution, but the NN retrieval

errors are generally lower in densely vegetated regions and transition zones.

Keywords: soil moisture remote sensing, SMAP, data assimilation, microwave

radiometer

1. Introduction1

Soil moisture is a key variable for many surface and boundary layer pro-2

cesses, such as the coupling of the water and energy cycles (Seneviratne et al.,3

2006; Gentine et al., 2011; Bateni and Entekhabi , 2012) or the partitioning of4

precipitation into runoff and infiltration (Philip, 1957; Corradini et al., 1998;5

Assouline, 2013). Soil moisture is also a key determinant of the carbon cycle6

(McDowell , 2011; Sevanto et al., 2014; Jung et al., 2017). The importance of7

soil moisture has been recognized by the World Meteorological Organization by8
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naming it an Essential Climate Variable (GCOS , 2009) and thus encouraging9

efforts to obtain better soil moisture observations, which is challenging because10

of its high variability both in space and time.11

One avenue to obtain observations of soil moisture is through satellite instru-12

ments that provide global observations with a relatively short revisit period of13

2-3 days. In particular, L-band (1.4 GHz) microwave instruments exhibit a high14

sensitivity to soil moisture in the top ∼5 centimeters of the soil in sparsely to15

moderately vegetated areas. This has led to the launch of two L-band satellite16

missions to observe soil moisture, the European Soil Moisture and Ocean Salin-17

ity (SMOS) mission in 2009 (Kerr et al., 2010) and the NASA Soil Moisture18

Active Passive (SMAP) mission (Entekhabi et al., 2010) in 2015.19

Traditionally, satellite soil moisture retrievals from L-band (and other) sen-20

sors are implemented through the inversion of Radiative Transfer Models (RTMs)21

(e.g. Owe et al. (2001); Kerr et al. (2012); O’Neill et al. (2015)), which explic-22

itly formulate the physical relationships linking surface soil moisture to satellite23

brightness temperature observations. The RTM inversion technique is used to24

produce the official SMOS and SMAP retrieval products, and is able to provide25

high quality soil moisture estimates (Al Bitar et al., 2012; Chan et al., 2016b;26

Colliander et al., 2017) with a typical latency of 12 to 24 hours. However, this27

approach requires accurate knowledge of the physical relationships between the28

surface state and the satellite observations as well as their associated parame-29

ters, which are often empirically estimated and thus uncertain. Moreover, RTM30

inversions also require explicit information on other surface states, including31
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surface soil temperature and vegetation, and are thus typically ill-posed prob-32

lems. Additionally, for time critical applications, such as near real time flood33

prediction or soil moisture assimilation into weather prediction models, retrieval34

products with a shorter latency are required.35

Data assimilation provides another option to generate improved soil moisture36

estimates through the merging of satellite and model information, and can yield37

soil moisture estimates that are of higher quality than estimates from satellite38

observations or models alone (e.g. Entekhabi et al. (1994); Walker and Houser39

(2001); Liu et al. (2011); Lahoz and De Lannoy (2014)). For soil moisture40

assimilation, the observations and model estimates have to be unbiased with41

respect to each other, which is typically achieved by locally matching the mean42

and variability of the satellite observations to those of the model (Reichle and43

Koster , 2004). While this satisfies the requirements of the assimilation system,44

it has the side effect of removing some independent information in the satellite45

observations. Given the high quality of soil moisture observations from SMOS46

and SMAP this is undesirable.47

As an alternative to RTM inversions, statistical Neural Network (NN) re-48

trieval algorithms have been successfully implemented for a number of sensors49

in recent years (Aires et al., 2005; Chai et al., 2009; Kolassa et al., 2013, 2016;50

Rodriguez-Fernández et al., 2015; Santi et al., 2016). Instead of explicitly for-51

mulating physical relationships, NNs are calibrated on a sample of satellite ob-52

servations and corresponding soil moisture estimates (the target data) to model53

the global statistical relationship between the satellite observations and surface54
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soil moisture. As a result, NN retrievals can offer several general advantages55

over traditional RTM inversions. First, they do not require an explicit param-56

eterization of physical relationships and are thus not affected by errors in our57

knowledge of these relationships or their parameters. Second, after a one-time58

calibration, NNs are computationally extremely efficient and can provide soil59

moisture estimates almost immediately after arrival of the instrument data,60

thereby shortening the latency. Third, training a NN non-locally on target data61

from a model, yields NN retrievals that are globally unbiased with respect to62

the model, with spatial and temporal patterns that are driven by the satellite63

observations (e.g. Jimenez et al. (2013); Kolassa et al. (2016); Alemohammad et64

al. (2017)). This may reduce the need for bias correction prior to an assimilation65

and at the same time retain more of the independent information contained in66

the spatial and temporal patterns of the satellite observations.67

In this study, we develop the first NN algorithm to retrieve global surface68

soil moisture from SMAP observations. The motivation for this work is two-69

fold. First, we investigate statistical retrieval techniques as a possible alterna-70

tive or supplement to the existing physically-based SMAP retrieval algorithms.71

Since statistical techniques require less ancillary data and are subject to differ-72

ent algorithm-related errors than physically-based retrievals, NN retrievals may73

provide useful information where and when RTMs are known to be uncertain.74

For SMOS, the NN technique has been successfully implemented (Rodriguez-75

Fernández et al., 2015). However, it is not obvious that a NN for SMAP will76

work equally well, given the differences between SMOS and SMAP in the ob-77
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serving geometry (multiple vs. single incidence angle) and instrument error78

characteristics (De Lannoy et al., 2015). Second, we aim to investigate the79

potential of statistical techniques to generate a soil moisture product with char-80

acteristics beneficial to SMAP soil moisture assimilation. The NN algorithm81

retrieves soil moisture in the climatology of the target model and thus may82

reduce the need for bias correction prior to data assimilation. In a follow-on83

study, we will investigate whether this results in a more efficient use of SMAP84

observations during data assimilation.85

The NN retrieval algorithm is trained with SMAP brightness temperatures86

and two ancillary datasets as inputs, and with target data from the NASA God-87

dard Earth Observing System version 5 (GEOS-5) model (section 2). Using the88

trained NN, we compute global estimates of volumetric surface soil moisture89

for the period April 2015 to March 2017 and evaluate them using a number of90

different metrics and techniques (section 3). We compare the SMAP NN soil91

moisture estimates to the target GEOS-5 model soil moisture to identify the in-92

dependent information provided by the SMAP observations that can potentially93

inform the model during data assimilation (section 4.1). Next, we assess the94

SMAP NN retrievals against independent in situ measurements and compare95

their skill to that of the SMAP Level-2 passive (L2P) retrieval product and the96

GEOS-5 model soil moisture (section 4.2). Finally, we assess the global error97

distributions of the SMAP NN, GEOS-5 and SMAP L2P products using a triple98

collocation (TC) analysis in conjunction with soil moisture retrievals based on99

observations from the Advanced Microwave Scanning Radiometer 2 (AMSR2)100
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and the Advanced Scatterometer (ASCAT), which have independent errors with101

respect to the SMAP and GEOS-5 products (section 4.3).102

2. Datasets103

2.1. Neural Network Inputs and Target Datasets104

2.1.1. SMAP Observations105

The main input to the NN soil moisture retrieval algorithm are the SMAP106

brightness temperatures. SMAP was launched in January 2015 and is equipped107

with an L-band (1.4 GHz) radiometer observing on four different channels, hor-108

izontal and vertical polarization as well as the 3rd and 4th Stokes’ parameter.109

SMAP is in a sun-synchronous, near-circular orbit with equator crossings at 6110

AM and 6 PM local time and a revisit time of 2-3 days (Entekhabi et al., 2010).111

Brightness temperature data have been collected since 31 March 2015.112

For our NN retrieval product we use SMAP Level-1C brightness temper-113

atures (Chan et al., 2016a) for the April 2015 to March 2017 period. The114

data are provided on the 36-km resolution Equal-Area Scalable Earth version115

2 (EASEv2) grid (Brodzik et al., 2012) as daily half-orbit files. We only use116

observations from the 6 AM overpass, in order to minimize observation errors117

due to Faraday rotation and the difference between the soil and canopy tem-118

peratures (Entekhabi et al., 2010; O’Neill et al., 2015). A test of different input119

combinations indicated that using data from all four SMAP channels as in-120

puts to the retrieval algorithm yielded the best NN retrieval performance (not121

shown). While the 3rd and 4th Stokes’ parameters are not directly sensitive to122
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soil moisture, including them as inputs helps the NN algorithm to distinguish123

between different observing conditions and thus determine the weight for a given124

brightness temperature observation.125

2.1.2. GEOS-5 Model Surface Soil Moisture and Temperature126

The model soil moisture estimates used here are generated using the GEOS-127

5 Catchment land surface model (Koster et al., 2000; Ducharne et al., 2000).128

The Catchment model version used in this study is very similar to that of the129

SMAP Level-4 Soil Moisture (L4 SM) version 2 system (Reichle et al., 2015,130

2016, 2017b ( in press), but SMAP brightness temperature observations are not131

assimilated. The surface meteorological forcing data were provided at 0.25◦132

resolution by the GEOS-5 Forward Processing atmospheric data assimilation133

system (Lucchesi , 2013). The GEOS-5 precipitation forcing data were cor-134

rected using global, daily, 0.5 ◦ resolution, gauge-based observations from the135

Climate Prediction Center Unified (CPCU) product, which have been scaled to136

the Global Precipitation Climatology Project (GPCP) v2.2 pentad precipita-137

tion product climatology (Reichle and Liu, 2014; Reichle et al., 2017a,b). The138

GEOS-5 background precipitation was also scaled to the GPCP v2.2 climatol-139

ogy. Output fields were produced as 3-hourly time averages and provided on140

the 9-km EASEv2 grid.141

In this study, we use two model output fields: (1) the surface soil moisture142

(0-5 cm soil layer) and (2) the surface soil temperature (0-10 cm soil layer). The143

GEOS-5 soil moisture fields served as target data in the NN training (section144

3.1) and were also used in the evaluation phase to assess the skill of the NN145

8



retrieval compared to that of the target model. The surface soil temperature146

data were used as an input to the retrieval algorithm to account for the surface147

soil temperature contribution to the observed brightness temperatures (section148

3.1). Using surface soil temperature estimates from the target model potentially149

introduces some of the GEOS-5 spatial patterns into the NN estimates and could150

lead to model dependency issues during a later assimilation of the NN estimates151

into the GEOS-5 model. The same would be true, however, for the assimilation152

of the SMAP L2P product, which also uses GEOS-5 ancillary soil temperatures153

(section 2.2.1). We assume here that the canopy temperature and surface soil154

temperature are in equilibrium for the 6 AM (local time) SMAP observations155

used here, so only a single temperature estimate is required. The surface soil156

temperature data were also used in the data quality control to identify frozen157

soil conditions (section 2.3).158

2.2. Validation Datasets159

2.2.1. SMAP Level-2 Passive Retrievals160

The SMAP L2P soil moisture retrieval product uses SMAP radiometer Level-161

1C brightness temperatures to provide soil moisture estimates on the 36-km EA-162

SEv2 grid as daily half-orbit files. The retrieval algorithm is based on a physical163

tau-omega model (Wigneron et al., 1995; O’Neill et al., 2015) to isolate the soil164

emission from the total observed surface emission (soil and vegetation) and to165

subsequently convert it into a soil moisture estimate through the use of soil166

emission and mixing models. The surface soil temperature data required by167

the tau-omega model are provided by the quasi-operational GEOS-5 Forward168
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Processing system (Lucchesi , 2013) with a 0.25◦ resolution. The tau-omega169

model also requires information on the vegetation water content (VWC), which170

is estimated from a climatology of the Normalized Difference Vegetation Index171

based on Moderate Resolution Imaging Spectroradiometer (MODIS) observa-172

tions using an empirical relationship established from prior investigations. No173

retrieval is performed for frozen soil conditions based on GEOS-5 surface soil174

temperature. Soil moisture retrievals are flagged as ‘not recommended’ when175

the VWC within the satellite footprint exceeds 5 kg m−2 (O’Neill et al., 2015).176

In this study, we use version 4 of the L2P ‘baseline’ soil moisture estimates177

derived from the SMAP morning (6 AM) overpass vertical polarization bright-178

ness temperatures (O’Neill et al., 2016). Only data points flagged as having the179

‘recommended’ retrieval quality were used.180

2.2.2. AMSR2 and ASCAT Soil Moisture Retrievals181

The Advanced Multichannel Scanning Radiometer 2 (AMSR2) is a multi-182

channel passive microwave satellite instrument that has been collecting data183

since July 2012. AMSR2 measures brightness temperatures at frequencies rang-184

ing from 6.9 GHz to 89 GHz with a revisit time of approximately 2 days and185

equator crossings at 1.30 AM and 1.30 PM local time (Kasahara et al., 2012).186

Here we use the Japan Aerospace Exploration Agency AMSR2 soil moisture187

product computed from the 10.7 GHz and 36.5 GHz vertical and horizontal188

polarization brightness temperatures (Maeda and Taniguchi , 2013). The data189

are provided as daily estimates of volumetric surface soil moisture on a grid190

with 0.1◦ × 0.1◦ resolution spacing.191
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The Advanced Scatterometer (ASCAT) (Figa-Saldaña et al., 2002) is an192

active microwave satellite instrument aboard the MetOp satellites, which have193

been collecting data since 2006. ASCAT measures surface backscatter at C-194

band (5.3 GHz) with a revisit time of 1-2 days and equator crossings at 9.30195

AM and 9.30 PM.196

Here we use the ASCAT surface soil moisture product developed by Wagner197

et al. (2013). The data are provided in units of surface degree of saturation198

with a sampling distance of 12.5 x 12.5 km and were converted into estimates199

of volumetric surface soil moisture using the soil porosity data of Reynolds et200

al. (2000).201

Despite being posted on finer resolution grids, the spatial resolution of the202

AMSR2 and ASCAT observations is very similar to the SMAP 36-km resolution.203

2.2.3. In Situ Measurements204

SMAP Core Validation Sites. The SMAP core validation sites (referred to here205

as ‘core sites’) represent locally dense networks of in situ soil moisture measure-206

ments that are specifically designed for the calibration and validation of SMAP207

soil moisture products (Colliander et al., 2017). Each site features an array of208

soil moisture sensors to represent the different spatial scales of the SMAP prod-209

ucts (3 km, 9 km and 36 km). The measurements from each site’s sensors are210

combined into and area-weighted average to yield one soil moisture time series211

per site that is representative of a 36-km satellite grid cell.212
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Table 1 summarizes the main characteristics of the 36-km core sites used213

here. Out of the 14 locations, nine are in North America, two in Europe, and214

one each in Asia, Australia and South America. The sites represent a range215

of different climatic conditions and land cover types, and the average number216

of sensors that contribute to the 36-km reference pixel data ranges between217

5 and 32. Figure 1 shows the distribution of the SMAP core sites and their218

corresponding dominant land cover.219

International Soil Moisture Network (ISMN).220
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We further evaluate the NN retrieval product against independent in situ soil221

moisture measurements from the International Soil Moisture Network (ISMN),222

a database of soil moisture networks hosted at the Technical University (TU)223

of Vienna (Dorigo et al., 2011) and referred to here as the ‘sparse networks’.224

We used only ISMN networks that are not part of the SMAP core sites (Table225

2). The REMEDHUS network comprises a different set of sensors for the core226

site and as a sparse network and thus appears for both in situ data types. The227

measurement depth, repeat frequency, coverage, station density and measure-228

ment method depend on the contributing network. The number of stations in229

each network ranges between 1 and 441 (Table 2), but - unlike for the core sites230

- there is typically only one sensor per 36-km grid cell. That is, the ISMN mea-231

surements are not necessarily representative of the spatial scale of the satellite232

observations. Figure 1 shows the spatial distribution of the ISMN stations and233

the dominant land cover at each location.234

For two of the ISMN networks, SCAN (Schaefer et al., 2007) and USCRN235

(Diamond et al., 2013), the data were already available in-house and had been236

subjected to additional quality control as described in De Lannoy et al. (2014)237

and (Reichle et al., 2015b) (their Appendix C). Hence, the in-house data were238

used for SCAN and USCRN instead of the data provided through the ISMN. As239

a result, more reliable metrics could be estimated for these two sparse networks.240
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2.3. Data Preprocessing241

2.3.1. Satellite Observations and Model242

We co-located all datasets spatially and temporally, using the 36-km EASEv2243

grid and the SMAP morning (6 AM) overpass times as a reference. The GEOS-5,244

AMSR2 and ASCAT data were aggregated from their higher-resolution native245

grids to the 36-km EASEv2 grid using simple averaging. The temporal co-246

location was implemented by using the GEOS-5 3-hourly average that includes247

the SMAP morning overpass for a given location and day. For the AMSR2 and248

ASCAT retrieval products, only data from their night-time/morning overpasses249

for the same day - at 1.30 AM and 9.30 AM, respectively - were used since250

these are closest in time to the SMAP overpass at 6 AM. Likewise, for the L2P251

retrievals we used only the morning overpass estimates, and no regridding was252

required because the SMAP-based NN and L2P products are provided on the253

same 36-km EASEv2 grid.254

We additionally applied several quality control steps to the satellite and255

model data sets to identify and exclude conditions in which a soil moisture re-256

trieval was not feasible. Using the GEOS-5 surface soil temperature, we excluded257

times and locations with a surface soil temperature below 1◦C. The MODIS-258

based VWC estimates provided with the L2P data were used to exclude times259

and locations with a VWC higher than 5 kg m−2, where the SMAP radiometer260

is not expected to provide reliable retrievals. Finally, we excluded all pixels261

within 72 km of a water body - defined as a grid cell with a water fraction in262

excess of 5% according to the GEOS-5 land mask - to mitigate the impact of263
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water bodies, as their low brightness temperatures cause erroneously high soil264

moisture retrievals (O’Neill et al., 2015).265

2.3.2. In Situ Data266

The core site measurements are representative of the 36-km spatial resolution267

of the retrievals and the aggregated model, however, the geographical center of268

the in situ sensors for a given reference pixel does not generally coincide with269

the EASEv2 grid cell center of the satellite and model products. Similarly,270

the location of a (single point) ISMN measurement is typically offset from the271

center of a EASEv2 grid cell. To account for this, the retrieval and (aggregated)272

model soil moisture were linearly interpolated to the in situ location using data273

from the nearest EASEv2 grid cell and its 8 surrounding neighbors, requiring a274

minimum of 4 data points. Where applicable, ISMN measurements located in275

the same EASEv2 grid cell were averaged and their average location was used276

for the interpolation. For each day, the in situ measurement closest in time and277

within a 3 hour window of the SMAP overpass was used.278

Using the GEOS-5 surface temperature for the ISMN measurements and the279

in situ surface soil temperature observations for the core site measurements, the280

in situ data were screened for (nearly) frozen soil conditions by applying the281

same 1◦C threshold that was used for the satellite and model data.282
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3. Methodology283

3.1. Neural Network Retrieval Algorithm284

In this study we use a NN approach to retrieve global surface soil mois-285

ture with a 2-3 day repeat using SMAP brightness temperatures, GEOS-5 soil286

temperatures and the MODIS-based VWC climatology that is used in the gener-287

ation of the SMAP L2P product. The NN retrieval algorithm is first calibrated288

(trained) using a subset of the available SMAP and model data to determine the289

statistical relationship between the satellite observations and surface soil mois-290

ture. Once calibrated, the trained NN is used to retrieve surface soil moisture291

from the entire set of satellite observations.292

3.1.1. Neural Network Architecture293

A neural network is a group of computational nodes arranged in a layered294

and inter-connected architecture. Figure 2 shows a schematic of a basic NN for295

soil moisture retrievals. The NN used here consists of 3 layers: (1) an input layer296

that receives the satellite observations and ancillary inputs, (2) one hidden layer,297

and (3) an output layer that produces the soil moisture estimates. This archi-298

tecture is sufficient to approximate any continuous function (Cybenko, 1989).299

The inputs for the SMAP NN retrieval algorithm are the observations from the300

four SMAP channels, the GEOS-5 surface soil temperature and the MODIS-301

based VWC estimates. The output from the NN algorithm is an estimate of the302

volumetric surface soil moisture.303

While the number of neurons in the input and output layers is determined by304
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Figure 2: Schematic of a neural network with close-up of a single neuron (adapted from
Kolassa (2013)).
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the number of input and output variables (here, 6 for the input layer and 1 for305

the output layer), the optimal number of neurons in the hidden layer depends on306

the problem complexity. We found that for this study 15 hidden layer neurons307

constituted the lowest number of neurons that was able to converge to a solution308

during the NN training. We use a fully connected feed-forward network, in which309

all neurons from one layer are connected to all neurons in the next layer. These310

connections are assigned weights - the synaptic weights - used by each neuron311

to compute a weighted sum of all its input plus a bias before applying a transfer312

function. Neurons in the input and output layers use a linear transfer function,313

while hidden layer neurons use the typical tangent-sigmoid transfer function.314

3.1.2. Neural Network Training315

In order to determine the statistical function that relates the NN input316

data, including the satellite brightness temperature observations, to surface soil317

moisture, the NN is calibrated on a sample set of NN inputs and coincident soil318

moisture estimates (the target data), together referred to as the training data.319

This process is referred to as the NN training and is schematically illustrated320

in Figure 3 (a). To generate a training dataset representative of all expected321

conditions, we used the first year (April 2015 - March 2016) of our study period322

for NN training. The second year (April 2016 - March 2017) of the study323

period was used for the evaluation presented in sections 4.1 and 4.2. Model324

soil moisture estimates from GEOS-5 are used as the target data, because (1)325

the model estimates have a similar resolution as the satellite observations while326

providing complete spatio-temporal coverage and (2) training on a model yields327
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Figure 3: The two phases of the NN soil moisture retrieval approach. (a) NN train-
ing and (b) soil moisture estimation using the trained network. NN inputs include
the SMAP brightness temperatures at vertical and horizontal polarization (Tbv and
Tbh), the 3rd and 4th Stokes’ parameters (Tb3 and Tb4), the GEOS-5 surface soil
temperature (Ts), and the MODIS-based vegetation water content (V WC).

NN estimates in the global model climatology, which could be beneficial for a328

later assimilation of the retrieved soil moisture.329

The total training dataset is split into three subsets - the calibration, val-330

idation and test data - by sampling the total dataset. The calibration data331

constitute 60% of the total training data and are used to optimize the NN332

synaptic weights (Note: In the literature these data are often referred to as333

‘training data’. In order to avoid confusion with the total training dataset, we334

have decided to use the term ‘calibration data’ instead). The validation data335

constitute 20% of the total training data and are used to detect over-fitting of336
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the NN weights (see below). These are part of the training data and should not337

be confused with the independent evaluation data used in sections 4.1 and 4.2 to338

assess the SMAP NN retrieval quality. The test data constitute the remaining339

20% of the training data and are used to assess the NN fit.340

The NN training is non-localized, meaning that one NN is fitted to a global341

training dataset that contains data from the entire training period (April 2015342

- March 2016). Furthermore, no information regarding the location and acqui-343

sition time of the training points is provided to the NN. The NN training thus344

essentially involves an association of the same sets of input values (that is, the345

same brightness temperatures, Stokes’ parameters, and ancillary data) with the346

mean value of the corresponding target soil moisture data. If, for example, the347

target data in a specific region overestimate the soil moisture, they will appear348

as outliers in the NN training, and the NN will thus not inherit such regional349

errors (e.g., (Jimenez et al., 2013)). As a result, the spatial and temporal pat-350

terns of the NN estimates are mostly driven by the input satellite observations.351

Moreover, the NN estimates match the global (single-value) mean and variabil-352

ity of the target data, but mean differences in the spatial patterns between the353

satellite observations and the model estimates are retained. These remaining354

local biases could represent an issue during an assimilation of the NN product.355

Further investigation will be needed to determine whether the disadvantage of356

local biases in the assimilation is outweighed by the benefit of retaining more of357

the independent information in the assimilated SMAP observations.358

The training itself consists of an iterative optimization of the NN synaptic359
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weights to minimize the error between the NN output and the target data (Fig-360

ure 3 (a)). Three different scenarios cause the NN training to stop. First, the361

training is stopped when the mean squared error between the NN outputs and362

the target data is less than 0.001 m3m−3 and the training goal is met. Second,363

the training is stopped when the NN training does not converge to a solution364

after a maximum number of iterations - set here at 1000. Third, training is365

stopped when over-fitting of the NN weights to the calibration data is detected.366

For this, the error between NN estimates computed from the validation input367

data and the validation model soil moistures is estimated upon each iteration. A368

divergence of the validation estimates from the corresponding validation model369

soil moisture indicates an over-fitting of the NN weights to the calibration data370

and a loss of the NN’s generalization ability. When such a divergence is de-371

tected for six subsequent iterations, the training is stopped and the weights372

from the last iteration before the occurrence of the divergence are used as the373

final solution.374

Here we use a Levenberg-Marquardt training algorithm (Levenberg , 1944;375

Marquardt , 1963) and apply an error back-propagation approach (Rumelhart376

and Chauvin, 1995) to update the weights. The Levenberg-Marquardt algorithm377

stops when a local minimum is found and thus does not permit a full exploration378

of the error surface. To account for this, the NN training is repeated four379

times, using a different random initialization for the NN weights (and thus a380

different starting point on the error surface) each time. This corresponds to four381

repetitions of the training process illustrated in Figure 3 (a). After the training382
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is stopped, we compute the root mean square error (RMSE) between the NN383

estimates computed from the test data and the corresponding test model soil384

moistures to assess the NN fit. The NN with the lowest RMSE error out of the385

four repetitions is then retained as the optimal NN and used to generate the386

soil moisture retrieval product.387

The trained NN is used to compute global estimates of volumetric soil mois-388

ture from the complete set of satellite observations and ancillary data (Figure389

3 (b)). The soil moisture estimates are computed for the period April 2015 to390

March 2017 and include both the training data (first year) and the evaluation391

data (second year) that was not used in the training phase.392

3.2. Evaluation Metrics393

As part of the NN retrieval development, we evaluate our retrieval product394

against in situ soil moisture measurements and assess its fit with respect to the395

target model. To quantify different aspects of the retrieval product and model396

skill, we use the correlation R, anomaly correlation Ranom and unbiased root397

mean square error ubRMSE. These metrics have been chosen, because they398

evaluate different aspects of the retrieval products and provide complementary399

information on the product skill. Additionally, they are well-established for400

the evaluation of soil moisture retrievals (Al Bitar et al., 2012; Albergel et al.,401

2013; Chan et al., 2016b; Colliander et al., 2017). The evaluation metrics are402

computed with respect to the model soil moisture estimates (section 4.1) and403

in situ measurements (section 4.2).404

The correlation (R) estimates the ability to capture soil moisture variations405
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at all time scales and is computed as the Pearson correlation coefficient between406

the raw soil moisture and reference data time series in each location. The407

anomaly correlation (Ranom) estimates the ability to capture individual drying408

and wetting events and is computed similarly to the correlation, but using the409

anomaly time series, with the anomalies defined with respect to the 30-day410

moving average centered on the current day. The ubRMSE measures the RMSE411

excluding the bias and is computed after removing the long-term mean from the412

soil moisture and reference data time series in each location. When assessing413

the fit between the NN retrieval product and its target model (section 4.1),414

we use the term unbiased root mean square difference (ubRMSD) to indicate415

that the target model is not considered the truth in this case. Rather, the416

ubRMSD simply aims to identify differences between the observed and modeled417

soil moistures.418

When evaluating the skill of the retrieval and model products against in situ419

measurements, only data points common to all four datasets (i.e., the NN and420

L2P retrievals, GEOS-5 model estimates, and in situ measurements) contributed421

to the metric calculations, with a minimum of 30 data points required. For the422

evaluation against ISMN data, we report the average metrics across all stations423

in a network. Following the approach used by De Lannoy and Reichle (2016),424

we employ a k-means clustering to avoid a dominance of areas with a high425

station density and to obtain realistic confidence intervals. The spatial extent426

of each cluster is limited to 1◦ around its center. Additionally, we report average427

metrics computed across all sites for the evaluation against core site data and428
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across all networks for the evaluation against the ISMN data, applying the same429

clustering approach.430

3.3. Triple Collocation Analysis431

The evaluation of the NN retrieval product against in situ observations is432

limited by the availability of the in situ measurements and thus only covers433

a limited range of climate regions and land cover types. However, for most434

applications, and in particular for data assimilation, retrieval error estimates435

are required for every location. Here, we implement a triple collocation (TC)436

analysis (Stoffelen, 1998; McColl et al., 2014) in order to compute a global map437

of error estimates for the NN soil moisture product.438

Triple collocation resolves the linear relationships between three independent439

datasets of the same variable (here, soil moisture) in order to estimate the440

errors in each dataset independent of a reference. It is a localized technique441

that estimates the errors for all three datasets in each location independently,442

yielding a map of error estimates. Several studies have successfully applied TC443

to estimate soil moisture retrieval errors (e.g., Scipal et al. (2008); Draper et444

al. (2013); Su et al. (2014); Chen et al. (2016)). Here, we use TC to estimate445

the NN retrieval product errors and, for comparison, the errors of the GEOS-5446

model and L2P soil moisture. However, one of the main assumptions of the TC447

analysis is an independence of the errors in the three datasets that constitute448

the triplet. In the case of the NN, GEOS-5 and L2P products this assumption449

cannot be made, since the NN uses information from the GEOS-5 model while450

the NN and L2P retrievals rely on the same satellite input data. We therefore451
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use the independent soil moisture retrieval products from AMSR2 and ASCAT452

(section 2.2.2) to create three suitable triplets: [SMAP NN, AMSR2, ASCAT],453

[GEOS-5, AMSR2, ASCAT] and [SMAP L2P, AMSR2, ASCAT]. This allows us454

to derive error estimates for SMAP NN, GEOS-5 and SMAP L2P.455

Following McColl et al. (2014) and Draper et al. (2013), we apply the ex-456

tended TC to the anomaly soil moisture time series (section 3.2) and compute457

an error estimate in each location with at least 10 common data points in the458

three contributing datasets. A bootstrapping approach with 100 samples is ap-459

plied to ensure a robust error estimation. To mitigate the error dependence460

on the (product- and location-specific) soil moisture variability, we estimate the461

fractional error standard deviation (Draper et al., 2013; Gruber et al., 2016), de-462

fined here as the error standard deviation divided by the soil moisture standard463

deviation of the corresponding product in each location. The fractional error464

standard deviation is an approximation of the noise-to-signal ratio, with values465

below 1 indicating that the noise is smaller than the signal and values greater466

than 1 indicating that the noise exceeds the signal.467

4. Results and Discussion468

4.1. Neural Network Fit469

As a first assessment, we compare the NN soil moisture estimates to the470

GEOS-5 modeled soil moisture used as the target data. The purpose of this is471

to (1) assess the NN fit with respect to the target data over the training period,472

(2) evaluate the NN’s ability to generalize beyond the training data and (3)473
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identify areas of disagreement between the SMAP driven NN estimates and the474

model soil moisture. In such areas, an assimilation of the NN retrievals should475

result in the largest changes to the model.476

Over the training period, the domain average ubRMSD, correlation and477

anomaly correlation between the NN and GEOS-5 soil moistures are 0.037478

m3m−3, 0.60 and 0.53, respectively. These fit values are typical for daily NN479

soil moisture retrievals (for example (Kolassa et al., 2016)). For the NN train-480

ing it is not desirable to obtain a perfect fit with respect to the target data,481

since the non-localized calibration results in spatial and temporal patterns that482

are driven by the satellite input observations and are thus expected to differ483

from patterns in the target data (Jimenez et al., 2013). Nevertheless, the fairly484

high correlation and low ubRMSD values indicate that the SMAP based NN485

soil moisture corresponds with the estimates generated by the model in most486

regions.487

To assess the NN’s ability to generalize beyond the training dataset and to488

investigate the spatial distribution of the differences between the NN estimates489

and the GEOS-5 soil moisture, we also compared both datasets over the evalua-490

tion period, i.e., using only data points that were not part of the training dataset.491

Figure 4 shows maps of the ubRMSD, correlation, anomaly correlation and bias492

between the NN estimates and the model soil moisture. Averaging across these493

maps yields a ubRMSD, correlation and anomaly correlation of 0.037 m3m−3,494

0.61 and 0.55, respectively, which are similar to the average metrics obtained495

for the training period and indicate that the NN is able to generalize beyond496
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the training dataset.497
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The correlations (Figure 4 (a)) and anomaly correlations (Figure 4 (b)) ex-498

hibit similar spatial patterns, with high values in the transition zones between499

wet and dry climates and in regions with strong soil moisture variability, such as500

the Sahel, Eastern Brazil and India. However, strong correlations and anomaly501

correlations are also observed in semi-arid, sparsely to moderately vegetated502

regions, such as the Western US, the Arabian Peninsula and large parts of Aus-503

tralia. The (anomaly) correlations are lowest in arid regions (e.g., the Sahara504

and Central Australia), where the soil moisture signal tends to be small and505

noisy, as well as in extensive cropland regions (e.g., the US corn belt or the506

croplands of Argentina, Uruguay and Paraguay), where irrigation and other507

agricultural practices are likely to cause differences between the satellite re-508

trieval product and the model.509

The spatial patterns of the ubRMSD between the SMAP NN estimates and510

the GEOS-5 soil moisture (Figure 4 (c)) are different from those observed for511

the (anomaly) correlations, with large portions of the globe showing a ubRMSD512

of less than 0.001 m3m−3, including Africa, Australia and large parts of South513

America (excluding the Andes). Larger differences occur near mountainous514

regions, such as the Rocky Mountains or the Southern Andes, likely caused515

by higher uncertainty in the SMAP retrieval product. High-latitude boreal516

regions, where the data availability is low and the model precipitation forcing517

is less reliable (Reichle and Liu, 2014), also exhibit larger differences between518

the NN retrieval product and the model. Finally, the ubRMSD between the NN519

retrievals and the model estimates is large in the croplands of the US as well520
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as Southern Russia and Kazakhstan, which is possibly a result of the missing521

representation of irrigation and other agricultural practices in the model that is522

being corrected by the NN.523

The bias between the NN estimates and the GEOS-5 model over the training524

period (Figure 4 (d)) ranges between -0.02 m3 m−3 and 0.02 m3 m−3 and, by525

design, has a global average close to zero. In arid regions such as the Arabian526

Peninsula, Central Australia or the Kalahari, the NN retrievals tend to indicate527

wetter conditions than the GEOS-5 model. An exception is the Western Sahara,528

where the NN retrievals show a dry bias with respect to the GEOS-5 estimates,529

which might be an artifact of increased surface roughness in this region that530

lowers the observed soil emissivity.531

In order to illustrate the behavior of the NN retrievals relative to the GEOS-532

5 model soil moisture in the training and evaluation periods, Figure 5 shows533

the anomaly time series with respect to a 30-day moving average of the NN soil534

moisture estimates (red squares) and the GEOS-5 model soil moisture (blue dia-535

monds) for three SMAP core site stations - TxSON, Walnut Gulch and Carman.536

(The figure also shows the in situ and L2P data, which will be discussed in sec-537

tion 4.2.1). For better readability and to reduce the effect of seasonal differences,538

we only plot the months April - September for 2015 and 2016 to represent the539

training and evaluation periods, respectively, with the former indicated through540

gray background shading. There is no obvious difference between the behavior541

of the NN retrieval product in both periods, underlining once more the ability542

of the trained NN to generalize beyond the training dataset. For the TxSON543
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(Figure 5 (a)) and Walnut Gulch (Figure 5 (b)) sites, the time series average544

and dynamic range of the NN retrieval product and the GEOS-5 soil moisture545

are comparable, but there are differences in the response to individual events,546

illustrated for instance during the stronger drying in the NN soil moisture at547

the TxSON station in June 2015. At the Carman site (Figure 5 (c)), the NN548

soil moisture has a stronger variability compared to the model. This illustrates549

that while the NN estimates globally match the bias and variability of the target550

data, local biases and differences in variability between the NN estimates and551

the target data occur.552

4.2. Evaluation against In Situ Observations553

In this section, we evaluate the skill of the NN retrieval product against554

independent in situ soil moisture measurements from the SMAP core sites and555

the ISMN (section 2.2.3). The skill of the NN retrievals is compared against556

that of the GEOS-5 model soil moisture and the L2P retrievals. Only data from557

the period April 2016 - March 2017 are used in the evaluation, since these data558

did not contribute to the NN training.559

4.2.1. Core Site Data560

First, we assess the skill of the soil moisture products against core site in561

situ measurements. The NN retrieval product has a higher correlation than the562

GEOS-5 soil moisture for most core sites (Figure 6(a)), which is reflected in563

the higher average correlation of 0.70 for the NN retrievals compared to 0.64564

for the model. The model has higher correlations than both retrieval products565
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Figure 5: Soil moisture anomalies with respect to a 30-day moving average at the (a)
TxSON, (b) Walnut Gulch and (c) Carman core sites for April - September of 2015
and 2016. Shown are the SMAP NN retrievals (red squares), the GEOS-5 model soil
moisture (blue diamonds), the SMAP L2P retrievals (green circles) and the core site in
situ soil moisture measurements (magenta triangles). Gray bars indicate the corrected
GEOS-5 precipitation (section 2.1.2) interpolated to the ground station site. The gray
background shading indicates data belonging to the training period.

35



at Reynolds Creek and a higher correlation than the NN retrievals at Carman566

and Kenaston. The Carman and Kenaston watersheds are both located at567

high latitudes where an incomplete seasonal cycle due to frozen soil filtering568

could prevent the NN from accurately learning the SM-Tb relationship for such569

conditions in the training phase. The NN retrievals tend to have a notably570

higher skill than the model in moderately vegetated regions, such as the shrub-571

and grassland sites of Little Washita or TxSON, as well as at most of the sites572

characterized by an arid climate (see Table 1). However, while the results appear573

to connect the relative performances of the NN product and model with climate574

and land cover characteristics, more sites would be required to draw a firm575

conclusion. The poor performance of the model at the South Fork site is partly576

due to agricultural tile drainage, which is not accounted for in the model.577

The L2P retrieval product has a higher correlation skill than both of the578

other soil moisture products for the majority of core sites and consequently579

has the highest average correlation of 0.78 (Figure 6(a)). The magnitude of580

the skill difference between the two retrieval products is not obviously related581

to the climate or land cover of the in situ sites. In regions with a moderate to582

strong seasonal cycle, the correlation (R) primarily reflects the skill of capturing583

seasonal soil moisture variations. Hence, the above results indicate a better584

representation of the soil moisture seasonal cycle in the two retrieval products585

compared to the model.586

In terms of the anomaly correlations (Figure 6(b)), the NN retrieval product587

has higher skill than the model estimates for most core sites and an average588
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Figure 6: (a) Correlation, (b) anomaly correlation and (c) ubRMSE between the core
site in situ measurements and the SMAP NN retrievals (red squares), the SMAP
L2P retrievals (green circles) and the GEOS-5 model soil moisture (blue diamonds).
Shown are the metrics for each site as well as the average across all sites. The error
bars represent the 95% confidence interval.
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skill of 0.66 compared to 0.57 for the model. The L2P retrieval product has the589

highest average skill overall (0.71) as well as for a majority of the core sites.590

In terms of the ubRMSE (Figure 6(c)), the skill of all three products is more591

similar. The NN product has a somewhat lower error than the L2P product at592

a majority of the stations and an overall lower average error of 0.037 m3m−3
593

compared to 0.041 m3m−3 for the L2P and GEOS-5 model estimates.594

Our findings for the L2P skill are consistent (within error bars) with those595

of Colliander et al. (2017) (not shown). The only significant difference occurs596

at the Twente site, where Colliander et al. (2017) used a different set of sensors.597

Compared to Chan et al. (2016b), we obtain higher correlations and a slightly598

larger ubRMSE for the L2P product. This is in part a result of the more599

refined validation approach used by Chan et al. (2016b), who generated special600

L2P retrievals on custom grid cells that better match the locations of the in601

situ measurements and thus did not perform the spatial interpolation that was602

required for the published L2P retrievals used here (section 3.2). Other factors603

contributing to the differences in the L2P metrics are the different validation604

periods and L2P product versions used here and by Chan et al. (2016b).605

To further investigate the cause for the skill differences between the retrieval606

products and the model at select sites, we now revisit Figure 5. At the TxSON607

and Walnut Gulch sites the anomalies for both retrieval products follow the608

in situ measurements very closely. The different average anomaly correlations609

obtained for these sites are mostly due to different responses to isolated events.610

An example is the dry down in June 2015 at the TxSON site, which is better611

38



captured by the L2P retrievals than by the NN retrievals.612

At the Carman site, both retrieval products are very noisy compared to the613

model and in situ measurements (Figure 5(c)). The L2P product is noisier than614

the NN product, which is also reflected in its higher ubRMSE at this site (see615

Figure 6(c) ). The higher ubRMSE might be caused by ancillary soil texture616

data in the L2P retrieval algorithm that poorly describes the highly variable617

conditions in the Carman watershed. This suggests that the NN retrieval ap-618

proach has the potential to supplement the physically-based SMAP retrievals619

in regions where the ancillary data used in the RTM are uncertain. Addition-620

ally, both retrieval products suffer from using a VWC climatology that does not621

accurately describe the rapidly changing vegetation dynamics at Carman.622

The above results show that both SMAP retrieval products have higher cor-623

relations than the model soil moisture with respect to the in situ measurements624

(Figure 6). This is encouraging, given that most of the core sites are located in625

North America, where models typically have been well tested and already have a626

high skill (e.g. Albergel et al. (2013)). Additionally, the retrievals are at a slight627

disadvantage in the comparison, since for most locations the SMAP emission628

depth will be less than the 5 cm depth represented by the in situ measurements629

and the model estimates. The better correlations of the retrieval products thus630

illustrate the high quality of the SMAP observations and their potential to pro-631

vide independent information that is not captured in the models, likely related632

to agricultural practices, land use differences or phenology. This is corroborated633

by the benefit of the SMAP brightness temperature assimilation performed in634
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the Level-4 soil moisture algorithm (Reichle et al., 2017b ( in press).635

Against the core site data, the L2P retrievals generally have a higher skill636

than the NN retrievals in terms of the correlations and anomaly correlations,637

while the NN retrievals have a better average ubRMSE (Figure 6). This behav-638

ior could indicate the existence of a conditional bias in the SMAP NN retrievals,639

as a result of dynamic range reduction that is typical for statistical techniques640

(e.g. (Kolassa et al., 2013)). The global average of the anomaly soil moisture641

temporal standard deviations for the SMAP NN retrievals, the SMAP L2P re-642

trievals and the GEOS-5 estimates are 0.020 m3 m−3, 0.036 m3m−3 and 0.015643

m3m−3, respectively, suggesting that the lower dynamic range of the NN re-644

trievals compared to the L2P retrievals is driven by the lower dynamic range645

of the model. At the core sites in Figure 5, the NN estimates appear to better646

match to dynamic range of the in situ measurements than the L2P retrievals,647

however, the limited number of core validation sites does not permit conclusions648

regarding the general suitability of the retrieval products’ dynamic range.649

A notable exception from the typical relative skill ranking is the Reynolds650

Creek site, where the NN retrievals have a significantly higher skill than the651

L2P retrievals in terms of the correlations and ubRMSE. Since the retrieval652

inputs are very similar for both products, the skill difference is likely caused by653

uncertainties in the ancillary data used by the L2P algorithm (for example the654

soil texture or roughness).655

From the NN retrieval perspective, differences in the core site correlation skill656

between the NN and L2P retrievals can be caused by (1) errors in the target657
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data, (2) errors in the satellite input data or (3) missing information in the NN658

inputs. The first two error sources affect the quality of the NN fit, whereas659

the latter would prevent the NN from capturing the full range of soil moisture660

variability. Errors in the SMAP observations would affect both of the retrieval661

products, such that target data errors or missing input information are more662

likely causes for the slightly lower NN retrieval correlations against the core site663

measurements. The results indicate that for the purpose of generating a ’stand-664

alone’ soil moisture retrieval product, the L2P retrieval algorithm is slightly665

more suitable than the NN approach. However, our findings also demonstrated666

the potential of the NN retrievals to supplement the physically-based approaches667

in regions where the ancillary data or RTM parameterization is uncertain. The668

core site results also show that the NN retrievals are of sufficient quality to669

warrant further study into their assimilation as motivated above.670

4.2.2. International Soil Moisture Network671

Next, we analyze the NN retrieval skill against in situ measurements from the672

ISMN. While these are single point measurements and thus less suitable than673

the core site data for evaluating satellite retrievals, they are more numerous674

and are available for a greater variety of climate and land cover conditions. As675

before, we also estimate the skill of the L2P retrievals and the GEOS-5 model676

estimates against the ISMN data for comparison.677

In contrast to the evaluation against the core site data, the correlation skill678

of the three soil moisture products against the ISMN measurements is more679

similar, with an average correlation of 0.52 for the GEOS-5 model, 0.58 for the680
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NN retrievals and 0.56 for the L2P retrievals (Figure 7(a)). This suggests that681

at the ISMN sites the NN retrievals slightly better capture the soil moisture682

seasonal variations. However, the lower correlations compared to the core site683

evaluation also illustrate that the single-sensor measurements of the ISMN less684

adequately represent the retrieval and model spatial scales.685

To further interpret the correlation differences between the three products,686

Figure 8 maps the ranking of the three datasets, with the marker at each ISMN687

site indicating the dataset with the highest skill. For better readability we only688

plotted sites located in the contiguous US (i.e., iRON, PBO H2O, SCAN, SNO-689

TEL, SOILSCAPE and USCRN), which constitutes the majority of sites used690

in this study. A large part of the ISMN stations where a skill assessment was691

possible are located in the Western US, as the screening for dense vegetation re-692

duces the data availability in the Eastern US below the threshold for computing693

a skill metric.694

The model shows the highest correlation skill at many of the stations lo-695

cated in or near the Rocky Mountains (Figure 8 (a)). In mountainous and696

rough terrain the microwave retrievals are less reliable, because of the increased697

surface roughness at the instrument footprint scale (Schmugge et al., 1980).698

Furthermore, the screening for frozen soil removes a large part of the SMAP699

time series and reduces the retrieval algorithm’s ability to correctly capture700

the soil moisture seasonal cycle in the training phase. In flatter regions away701

from the mountains, such as the Central Valley, Arizona, South East New Mex-702

ico or North Dakota, the retrievals mostly have higher correlations than the703
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Figure 7: Network average (a) correlation, (b) anomaly correlation and (c) ubRMSE
between the ISMN in situ observations and the SMAP NN retrievals (red squares),
the SMAP L2P retrievals (green circles) and the GEOS-5 model soil moisture (blue
diamonds). Shown are the metrics for each network as well as the average across all
networks. All averages are cluster-based (section 3.2) The error bars represent the
95% confidence interval.
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model (Figure 8 (a)). Thus, the high station density near the Rocky Mountains704

slightly skews the average correlation in favor of the model resulting in a model705

correlation that is comparable to those of the retrieval products. Our clustering706

approach (section 3.2) mitigates this skew to some extent, but with a cluster707

spatial extent limited to 1◦, we still use a higher number of clusters in the Rocky708

Mountain region than in other parts of the US. A longer SMAP time series will709

allow for more correlations to be computed for stations in the Eastern US and710

would likely lead to different relative correlation skill values for the retrievals711

and the model estimates.712

It is worth noting that our correlation value of 0.65 versus SCAN for the713

SMAP NN retrievals (Figure 7 (a)) is similar to the 0.61 correlation versus714

SCAN obtained for SMOS NN retrievals by Rodriguez-Fernández et al. (2015).715

However, it is not possible to draw firm conclusions regarding the relative quality716

of the SMAP and SMOS NN products, owing to the differences in the validation717

period and data quality control between Rodriguez-Fernández et al. (2015) and718

our study.719

In terms of the network average anomaly correlations (Figure 7(b)), the720

L2P retrievals have the highest skill with an average anomaly correlation of721

0.50 compared to 0.48 and 0.44 for the NN and GEOS-5 products, respectively.722

Investigating the ranking in terms of the anomaly correlations (Figure 8(b))723

shows that the L2P product has the highest anomaly correlation for most of the724

stations leading to the highest average anomaly correlation.725

Finally, the NN retrievals have the lowest average ubRMSE of 0.026 m3
726
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Figure 8: Skill ranking in terms of (a) correlation, (b) anomaly correlation and (c)
ubRMSE of the SMAP NN retrievals (red squares), the GEOS-5 model soil moisture
(blue diamonds) and the SMAP L2P retrievals (green circles) at the ISMN stations
located in the US. Each marker indicates the dataset that obtained the highest skill
at a given station.The contributing networks are iRON,PBO H2O, SCAN, SNOTEL,
SOILSCAPE and USCRN.
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m−3 compared to 0.030 m3 m−3 for the L2P retrievals and the GEOS-5 esti-727

mates (Figure 7(c)). This relative behavior is largely driven by a significantly728

lower ubRMSE for the NN retrievals against the DAHRA and RSMN networks.729

Across all stations, the ubRMSE ranking of the three products in Figure 8(c)730

is fairly evenly distributed. This also indicates that the lower network average731

errors observed for the L2P product are not consistent, but driven by a few732

stations with a low L2P error.733

Overall, the correlations of all three products with respect to the ISMN data734

are lower than for the comparison against the core site data, owing to the lower735

representativeness of the ISMN stations compared to the core sites.736

4.3. Triple Collocation Analysis737

For a global evaluation of the SMAP retrieval products and the GEOS-5738

model estimates, we estimate the fractional error standard deviations using the739

TC analysis (section 3.3).740

The fractional error spatial patterns mostly show good agreement across the741

three soil moisture products (Figure 9), corroborated by the very similar global742

mean fractional error of ∼ 1.1 for all three products. All products have fractional743

errors higher than 1 in the arid and semi-arid regions of the Sahara, the Tibetan744

Plateau, Northern Mexico and the Northern Arabian Peninsula, indicating that745

the noise (even though it is small in absolute terms) dominates the small soil746

moisture signal here and limits the accuracy of all three products. Other arid747

and semi-arid regions, however, including most of Australia, Southwest Africa748

and the Southern Andes, have low fractional errors for all products. This in-749
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dicates that the local fractional errors are driven by a combination of factors,750

likely including the mean soil moisture level, the surface roughness, land cover751

and soil type.752

Despite a general similarity of the fractional error spatial patterns of all three753

soil moisture products, several differences between the retrieval and model error754

patterns exist. For example, the GEOS-5 estimates have higher errors than755

the retrieval products in the high latitude boreal regions of Alaska and Eastern756

Siberia, where the precipitation forcing is less reliable (Reichle and Liu, 2014).757

In contrast, both retrieval products have higher fractional errors than the model758

in areas surrounding the tropical forests, where a denser vegetation cover limits759

the canopy penetration of the microwave signal and the higher surface roughness760

increases the signal noise.761

The NN and L2P retrieval products show a generally good agreement of762

the fractional error spatial patterns, but differences in the absolute values exist763

(Figure 10). For example, the L2P retrievals tend to have lower fractional errors764

(or noise-to-signal ratios) in the arid regions of Central Australia, the Kalahari765

or the Southern Sahara, possibly indicating that the ancillary soil data used by766

the L2P algorithm allows it to better account for the effect of surface roughness,767

which can be significant in arid regions. However, this behavior is not observed768

in other arid areas, such as the Central Sahara or the Arabian Peninsula. The769

NN retrievals have a lower fractional error in moderately to densely vegetated770

regions and transition zones, such as India, Central Africa, Eastern Brazil and771

Northern Australia. This suggests that in these regions, the NN method can772
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Figure 10: Difference of the fractional error standard deviations between the NN and
L2P retrievals (NN - L2P). Negative values (red) indicate a lower fractional error and
higher signal-to-noise ratio for the NN retrievals and positive values (blue) indicate a
lower fractional error of the L2P retrievals.
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produce soil moisture estimates with a higher certainty and could be used to773

supplement or improve the L2P retrievals. However, due to the lack of in situ774

stations in these areas, this finding cannot be further corroborated.775

While the characterization of the global error distributions is informative,776

it is important to keep in mind that the error estimates derived from the TC777

analysis here are also subject to uncertainties. These are related to (1) differ-778

ences in the overpass times between AMSR2 and ASCAT relative to SMAP and779

the simulation times of the model, (2) the slightly lower emission depth of the780

higher frequency AMSR2 and ASCAT data compared to SMAP and the depth781

of the model’s surface layer, and (3) potential errors in the porosity data used782

to convert the ASCAT data into volumetric surface soil moisture estimates.783

5. Summary784

In this study we developed and evaluated a NN based retrieval algorithm785

to estimate global surface soil moisture from SMAP brightness temperatures.786

The SMAP NN retrieval product was trained on GEOS-5 model estimates and787

evaluated against in situ measurements from the SMAP core validation sites788

and the ISMN. The skill of the NN retrieval was compared against that of the789

GEOS-5 estimates and the SMAP L2P retrievals.790

The comparison of the SMAP NN retrieval product against the GEOS-5791

model soil moisture showed that globally the two datasets agree well. Differ-792

ences occur in mountainous regions, where the microwave satellite retrievals are793

uncertain, and in agricultural areas, where the satellite retrieval product possi-794
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bly captures the result of agricultural practices (such as irrigation, tilling and795

harvesting) that are not represented in the model. Combined with the generally796

higher skill of the SMAP retrievals against in situ measurements, the results con-797

firm the potential for the SMAP observations to inform a model through data798

assimilation, as has been shown with the SMAP Level-4 products (Reichle et799

al., 2017b ( in press).800

The SMAP NN soil moisture estimates compare favorably against the SMAP801

core site in situ measurements with an average correlation and anomaly corre-802

lation of 0.70 and 0.66, respectively, and an average ubRMSE of 0.037 m3m−3.803

Evaluated against ISMN sparse network in situ measurements, the correlation804

and anomaly correlation were 0.58 and 0.48, respectively, and the ubRMSE was805

0.026 m3m−3. The core site data better represent the spatial scales of a satel-806

lite footprint or model grid cell, leading to the higher skill of the NN retrieval807

against core site data than against ISMN data.808

The NN retrievals had a higher correlation (by 0.06) and a higher anomaly809

correlation (by 0.09) against core site in situ measurements than the GEOS-5810

model estimates, which were used as the NN target data. The corresponding811

average ubRMSE of the NN retrievals was 0.004 m3m−3 lower than that of the812

GEOS-5 estimates. Evaluated against ISMN data, the relative skill of the NN813

retrievals and model estimates was comparable to that found during the core814

site evaluation.815

Overall, the results suggest that (1) the NN retrievals are able to use the816

SMAP brightness temperatures to correct potential errors in the model-based817
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target data and (2) the NN retrievals capture soil moisture information not818

present in the model, resulting in better agreement with the core site and ISMN819

in situ measurements. The latter indicates that the NN retrievals may be benefi-820

cial in data assimilation, in particular for the short-term soil moisture variations821

(captured by the anomaly correlations against the cores sites) for which the skill822

difference between the retrievals and the model estimates is highest.823

Generally, the (anomaly) correlation skill of the NN retrievals against core824

site measurements is lower than that of the SMAP L2P product (by 0.08 and825

0.05 for the correlations and anomaly correlations, respectively). The ubRMSE826

of the NN retrievals, however, is lower than that of the L2P retrievals by 0.004827

m3m−3. Evaluated against ISMN data, which represent a more diverse set828

of local conditions but only provide point-scale information, the NN and L2P829

retrievals have a very similar (anomaly) correlation skill, but the NN retrievals830

have a lower ubRMSE (by 0.04 m3m−3) than the L2P retrievals. The slightly831

lower (anomaly) correlation skill of the NN retrievals at the core sites is most832

likely related to errors in the training target data or missing information in the833

input data, whereas the higher ubRMSE of the L2P retrieval at the core sites834

is likely related to the higher time series variability of this product.835

A triple collocation analysis using AMSR2 and ASCAT soil moisture re-836

trievals as the additional two datasets showed that at the global scale all three837

products have comparable errors relative to their respective soil moisture dy-838

namic range. The NN and L2P retrieval products have very similar error spa-839

tial patterns, but the NN retrievals have a better skill than the L2P product in840
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densely vegetated regions and transition zones outside of CONUS. The GEOS-5841

model has a slightly different error spatial patterns compared to the retrievals,842

with notable differences in high latitudes, where the model has higher errors843

owing to the increased uncertainty in its precipitation forcing, and in densely844

vegetated areas, where the retrieval products are less reliable owing to the lower845

soil moisture sensitivity of SMAP brightness temperatures in the presence of846

dense vegetation.847

Overall, the skill of the SMAP NN retrievals is only slightly worse that of the848

SMAP L2P retrieval product, but the NN retrievals are provided in the global849

climatology of the GEOS-5 model, which may reduce the need for further bias850

correction before data assimilation. Local biases between the NN retrievals and851

the model, however, are retained in the NN retrievals, which would violate typ-852

ical data assimilation requirements. Additionally, local discrepancies between853

the dynamic range of the NN retrievals and the model estimates could result in854

non-orthogonal errors between the observations and the model estimates, which855

would also violate typical data assimilation requirements. Consequently, fur-856

ther investigation is needed to determine the impact of such violations on the857

quality of the hydrological fields and surface flux estimates obtained from data858

assimilation, and whether the assimilation system can use NN retrievals more859

efficiently than standard retrievals or brightness temperatures.860

The natural next step is thus to assimilate the SMAP NN retrieval product861

and compare the resulting analysis skill against that of assimilation experiments862

using traditional localized or other non-localized bias correction techniques, and863

53



against the assimilation of L2P retrievals and brightness temperatures. Another864

possible extension to this study would be to use the higher-resolution SMAP865

Enhanced Level-1C brightness temperature product (Chaubell et al., 2016) to866

generate SMAP NN soil moisture retrievals at a higher spatial resolution.867
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F.M., (2015). Ecosystem properties of semiarid savanna grassland in West1193

Africa and its relationship with environmental variability. Global change bi-1194

ology, 21(1), pp.250-264. doi:10.1111/gcb.127341195

Taylor, J.R., Osenga, E.C., Jack-Scott, E., Arnott, J.C. and Katzenberger, J.,1196

(2015), December. Establishing a Long Term High-Altitude Soil Moisture1197

Monitoring Network at the Watershed Scale. AGU Fall Meeting Abstracts.1198

Wagner, W., Lemoine, G., and Rott, H. (1999). A method for estimating soil1199

moisture from ERS scatterometer and soil data. Remote Sensing of Environ-1200

ment, 70(2), 191-207. doi:10.1016/S0034-4257(99)00036-X1201

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., ...1202

and Rubel, F. (2013). The ASCAT soil moisture product: A review of its1203

specifications, validation results, and emerging applications. Meteorologische1204

Zeitschrift, 22(1), 5-33. doi: 10.1127/0941-2948/2013/03991205

Walker, J.P. and Houser, P.R., (2001). A methodology for initializing soil mois-1206

ture in a global climate model: Assimilation of near-surface soil moisture1207

observations. Journal of Geophysical Research, 106(D11), pp.11761-11774.1208

doi:10.1029/2001JD9001491209

69



Wigneron, J.P., Chanzy, A., Calvet, J.C. and Bruguier, N., (1995). A sim-1210

ple algorithm to retrieve soil moisture and vegetation biomass using passive1211

microwave measurements over crop fields. Remote Sensing of Environment,1212

51(3), pp.331-341. doi:10.1016/0034-4257(94)00081-W1213
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